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We study the competition between an instantaneous local Coulomb repulsion and a boson mediated retarded
attraction, as described by the Hubbard-Holstein model. Restricting to the case of half-filling, the ground-state
phase diagram and the transitions from antiferromagnetically ordered states to charge ordered states are ana-
lyzed. The calculations are based on the model in large dimensions, so that dynamical mean-field theory can be
applied, and the associated impurity problem is solved using the numerical renormalization group method. The
transition is found to occur when electron-electron coupling strength U and the induced interaction � due to
electron-phonon coupling approximately coincide, U��. We find a continuous transition for small coupling
and large �0, and a discontinuous one for large coupling and/or small �0. We present results for the order
parameters, the static expectation values for the electrons and phonons, and the corresponding spectral func-
tions. They illustrate the different types of behavior to be seen near the transitions. Additionally, the quasipar-
ticle properties are calculated in the normal state, which leads to a consistent interpretation of the low-energy
excitations.
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I. INTRODUCTION

A feature of strongly correlated systems is the existence
of competing interactions on low-energy scales which can
lead to different types of symmetry breaking and different
ground states. There can be various forms of magnetic order,
superconducting or charge ordered states; there may also be
transitions between these states, and in some cases they even
coexist. For instance, compounds such as the vanadites,1

high Tc cuprates,2 fullerides,3 manganites,4,5 and organic
salts6 possess rather involved phase diagrams and, to under-
stand them, an analysis of the competition between the dif-
ferent interactions will be important.

Here we study the competing effects between an instanta-
neous local Coulomb repulsion and the retarded interaction
induced by a coupling to an optical phonon mode using the
Hubbard-Holstein �HH� model. We consider the competition
between two types of order, antiferromagnetic �AFM� and
charge order �CO�, which can occur in the model at half-
filling. The emphasis will be on treating the phonons fully
quantum mechanically and in allowing for arbitrary coupling
strengths, so that the full interaction parameter regime can be
investigated. This is possible if we use the infinite dimen-
sional version of Hubbard-Holstein model so that we can
apply the dynamical mean-field theory �DMFT�, which be-
comes exact in this limit. The numerical renormalization
group �NRG� method is then used to solve the associated
effective impurity problem. This permits one to handle both
strong electron-electron and strong electron-phonon interac-
tions as well as a wide range of phonon frequencies. We
focus on the ground state and spectral properties of electrons
and phonons at zero temperature.

The infinite dimensional Hubbard, Holstein, and com-
bined HH models have received considerable attention in the
past.7–22 For the pure Holstein case, Freericks et al.7,8 found
instabilities to charge order and superconductivity by quan-
tum Monte Carlo �QMC� and iterated perturbation theory for

different filling factors. At half-filling, Benedetti and
Zeyher,10 and Hague and D’Ambrumenil,23 investigated the
normal state and found a breakdown of Migdal-Eliashberg
theory when a lattice instability develops for stronger
electron-phonon coupling. The charge ordered ground state
and phase diagram in the adiabatic limit has been analyzed
by Ciuchi et al.11 It was shown there that the weak and
strong coupling CO states are smoothly connected.

For the Hubbard-Holstein model in the absence of long-
range order, the phase diagram of the paramagnetic �PM�,
bipolaronic �BP� phases, and the metal-insulator �MI� transi-
tion has been established.16,24 Another recent study of the
model without long-range order deals with the topic of po-
laron formation18,19 with finite electron density, extending
the original work of Holstein25 who considered the single
electron case only. The occurrence of superconductivity was
studied in Refs. 9, 20, and 21. In a two site calculation
Takada found superconductivity with off-site pairing at half-
filling in a very small parameter regime in the antiadiabatic
region.21 The effect of phonons on the quasiparticle excita-
tions in the presence of AFM has also been investigated.26

There have also been extensive calculations for the one-
dimensional version of model,27–32 which we shall comment
on briefly later.

Our analysis here of the HH model will extend the earlier
work by allowing for AFM and CO states, which are the
dominant instabilities at half-filling. We study the transitions
between these states. This will give a more complete picture
of the phase diagram and the properties of the model in the
ordered phases. In the regions of the phase diagram with CO,
we also obtained superconducting solutions, but the CO
states were found to have lower energy. We calculate the
static and dynamic properties in both these types of broken
symmetry phases. The paper is structured as follows. In Sec.
II we specify the formal setup of the HH model and the
DMFT-NRG method. We also give explicit expressions for
the different contributions to the total energy. The depen-
dence of these on the interactions is discussed in detail in
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Sec. IV. Before that in Sec. III, we discuss the global phase
diagram, the order parameters and static quantities and their
dependence on U, �, and �0. Section V explores the normal
state properties of the HH model which helps to understand
the ground-state phase diagram and transition. In Sec. VI we
discuss how the bosonic properties are modified by the cou-
pling to the electronic system. In Sec. VII we present results
for the electronic and bosonic spectral functions, before con-
cluding in Sec. VIII.

II. MODEL AND DMFT-NRG SETUP

The Hamiltonian for the HH model is given by

H = − �
i,j,�

�tijci,�
† cj,� + H.c.� + U�

i

n̂i,↑n̂i,↓ + �0�
i

bi
†bi

+ g�
i

�bi + bi
†���

�

n̂i,� − 1� . �1�

ci,�
† creates an electron at lattice site i with spin �, and bi

† a
phonon with oscillator frequency �0, n̂i,�=ci,�

† ci,�. The elec-
trons interact locally with strength U, and their density is
coupled to an optical phonon mode with coupling constant g.
We have set the ionic mass to M =1 in Eq. �1�. The local
oscillator displacement is related to the bosonic operators by
x̂i= �bi+bi

†� /�2�0, where �=1, and one can define a charac-
teristic length x0=1 /��0 for the oscillator. In Appendix A,
we give the details for a mean-field calculation in the adia-
batic limit for this model.

For our calculations we assume a bipartite lattice with A
and B sublattice, where the matrix Green’s function can be
written in the form

G� k,���� =
1

�A,�����B,���� − �k
2��B,���� �k

�k �A,����
� , �2�

with �	,����=�+
	,�−�	,����, 	=A ,B, and k-independent
self-energy.33 For commensurate charge order we have 
A,�
=
−hc, 
B,�=
+hc, and �B,����=Un−�A,��−���, with n
= �nA+nB� /2, n	=��n	,�, n	,�= �n̂	,�	. For the AFM order
one has 
A,�=
−�hs, 
B,�=
+�hs, and the condition
�B,����=�A,−����. We consider solutions of exclusive AFM
or CO, where the symmetry breaking fields vanish, hc ,hs
→0.

In the case with symmetry breaking, the effective Weiss
field is a 2�2 matrix G0

−1�t�. The DMFT self-consistency
equation in this case reads34

G0,�
−1 ��� = G� ����−1 + �� ���� . �3�

The matrix of local lattice Green’s functions G� ����
=1 /N�kG� k,���� is obtained by integrating over the density
of states, 1 /N�kf��k�=
d�0���f���. We assume a semiellip-
tic DOS, 0���=2�D2−�2 /�D2 corresponding to a Bethe lat-
tice in all the following calculations. In the DMFT this local
Green’s function, and the self-energy are identified with the
corresponding quantities for an effective impurity model.34

One focuses for the calculations on the properties of the A
sublattice. We can take the form of this impurity model to
correspond to an Anderson-Holstein impurity model35 and

calculations are carried out as detailed, for instance in Refs.
36 and 37. We solve the effective impurity problem with the
numerical renormalization group38,39 adapted to these cases
with symmetry breaking. The NRG has been shown to be
very successful for calculating the local dynamic response
functions, and we use the recent approach40,41 based on the
complete basis set proposed by Anders and Schiller.42 For the
logarithmic discretization parameter we take the value �
=1.8 and keep about 1000 states at each iteration. The
bosonic Hilbert space is restricted to a maximum of 50
states.

In the AFM case the A-sublattice magnetization, �afm
=mA= �nA,↑−nA,↓� /2 serves as an order parameter. For CO
we define �co= �nA−1� /2.

To find the ground state of the system we calculate the
ground-state energy Etot= �H	 /N of the HH Hamiltonian �1�
in the different phases. This gives generally,

Etot = Ekin + EU + Eg + Eph. �4�

The first term is the kinetic energy, which reads

Ekin = �
�
� d�k0��k��k� d�f���AB,k,���� , �5�

where AB,k,����=−Im GAB,k,���� /� for the off-diagonal
Green’s function in Eq. �2� and f��� is the Fermi function,
where f���=��−�� at zero temperature. In the noninteracting
case this expression can be evaluated analytically and we
find for half-filling, 
=0, Ekin

0 =−4D /3�, which for D=2 is
Ekin

0 �−0.849. This can be used as reference energy. More
specifically one finds

Ekin = �
�
� d�k0��k��k� d�f���gk,���� , �6�

where

gk,���� = −
1

�
Im

1
��A,�����B,���� − �k

. �7�

The interaction energies EU, Eg can be calculated from
expectation values,

EU =
U

2 �
	

�n̂	,↑n̂	,↓	, Eg =
g

2�
	

��b	 + b	
†��n̂	 − 1�	 .

We distinguish between A- and B-sublattice values, which
are equal in the AFM case, but not for the CO case. There we
use the operator identity n̂B,�=1− n̂A,� �particle hole transfor-
mation�, at half-filling, which yields �n̂B,↑n̂B,↓	= �n̂A,↑n̂A,↓	
+1− �n̂A	. The terms for Eg turn out to be equal on A and B
sublattice as both terms will contribute with opposite value.

III. PHASE DIAGRAM AND STATIC PROPERTIES OF
THE ELECTRONS

As the electron-phonon coupling in Eq. �1� is linear, the
bosonic field can be integrated out in a path integral frame-
work, which yields a purely electronic theory with an effec-
tive electron-electron interaction of the form
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Ueff��� = U + g2D0��� , �8�

where the free phonon propagator on the real axis is D0���
=2�0 / ��2−�0

2�. These are the competing interactions on dif-
ferent energy scales. There is a limiting case �0→�, the
antiadiabatic limit, where �=2g2 /�0 is kept fixed. In this
limit, Ueff��� becomes independent of � and tends to Ueff
=U−�, so that the model then becomes equivalent to a Hub-
bard model with U=Ueff. Generally, the situation is more
complicated. For large � the Coulomb repulsion U is domi-
nant in Eq. �8� as D0��� goes to zero. However, �0 enters as
a relevant energy scale at lower energy and for �����0 the
competition between the bare interactions is most important.
The DMFT calculations deal with these competing interac-
tions on different energy scales, and as a result the ground-
state phase diagram of the infinite dimensional HH model at
half-filling emerges. This phase diagram was already pre-
sented earlier.43 In order to give a comprehensive account in
this paper, we include some of these results in the following.

We comment briefly on the notation and energy scales. In
electron-phonon physics, specifically in Migdal-Eliashberg
theory, the electron-phonon coupling is usually specified by a
dimensionless parameter, often called �, involving the cou-
pling strength and an electronic scale. In contrast, in this
paper � has the dimension of an energy, and it is compared
with the Coulomb repulsion U. The dimensionless parameter
for electron-phonon coupling corresponding to the usual con-

vention would be �̄=0�0��, where 0�0�=2 / �D��. For
physical optical phonons the scale �0 is expected to be
roughly �00.01W−0.2W, where W is the electronic band-
width. The purpose of the paper is to characterize the
electron-phonon system quite generally, with a tunable pa-
rameter �0, which for many results we chose as �0=0.15W
neither too close to the adiabatic nor to the antiadiabatic
limiting cases for illustration of intermediate behavior. It
should be noted that the value is large for most realistic
electron-phonon systems with the possible exception of the
alkali doped fullerides.44 For the former cases smaller values
such as �0=0.05W could serve as a better guideline.

A. Phase diagram

We first present the complete phase diagram as shown in
Fig. 1. The overall energy scale is set by the bandwidth W
=4t=4, and the phonon frequency �0=0.6t was chosen.
Many results such as the global phase diagram are similar for
different choices of �0, but we will also point out the differ-
ences appearing for other values of �0. The limiting cases of
the phase diagram can be understood on a qualitative level.
The U axis corresponds to the pure repulsive Hubbard model
which is known to be AFM ordered at weak coupling45 for a
bipartite lattice, and this order is smoothly connected to the
strong coupling Heisenberg AFM.36,37 Also along the � axis,
the corresponding pure Holstein model has a charge ordered
ground state for g�0 and �0�0, such that the limits of
weak and strong coupling are smoothly connected.7 For finite
U and g we find that the transition line is close to the line
�=U with a small tendency toward ��U. For larger values
of the interactions we have included a dashed line ��� above

which our DMFT-NRG calculations find solutions with finite
�co and another one ��� below which �afm is finite.

For weaker coupling �U�3� the order parameters become
very small close to the line Ueff=0. There are strong indica-
tions that the transition proceeds both directly and continu-
ously from one type of ordered to the other ordered state,
such that only at the critical point both order parameters
vanish. For instance, we find that all the relevant response
quantities behave continuously. A direct order to order tran-
sition is found in the antiadiabatic limit, where for any finite
Ueff�0 the system is AFM ordered45 and for Ueff�0 in the
CO or SC state.46 We have therefore a continuous transition
from an ordered to an ordered state with vanishing order
parameters at the transition. There is no reason to expect that
the transition becomes discontinuous immediately when �0
is decreased from infinity to a finite value �0�W. In addi-
tion, in the DMFT-NRG calculations we find that near the
transition, the smaller �0 is, the larger the order parameter
becomes, as detailed later in Fig. 7. Thus we conclude that
the direct continuous transition scenario persists for weak
coupling and finite �0. Mean-field calculations �see Appen-
dix A� in the adiabatic limit support the picture of a direct
transition from one ordered state to the other, however, the
transition is always discontinuous then. Also the local effec-
tive quasiparticle interaction Ur �which will be discussed
more fully later� is observed to change sign at Ueff=0, which
is consistent with a change of ground state there.

For larger couplings we have a parameter regime where
we can find finite �afm and �co. In this regime the transition
from the AFM to the CO turns out to be discontinuous and
one can identify a point on the transition where the nature of
transition changes. The calculation of the total ground-state
energy �see inset of Fig. 4� shows that also here the transition
occurs approximately at Ueff�0. The behavior of the model
along the line U=� has been studied in Ref. 47.

The HH model in one dimension has been studied in great
detail with efficient numerical methods.27–29 One finds a

0 2 4 6 8
0
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λ

U

(PM) (MI)

(BP)
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FIG. 1. �Color online� The phase diagram of antiferromagnetic
�AFM� and charge order �CO� in the U−� plane. The thin black line
��U gives a continuous transition and the thick line a discontinu-
ous one. A nonzero order parameter was found above dashed line
with diamonds for CO and below the dashed line with circles for
AFM order. The dashed lines with points give the transition for
phases with no long-range order, a paramagnetic metallic, bipo-
laronic, and Mott insulator.
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Mott insulator with strong antiferromagnetic correlations, but
no long-range order, when Ueff�0, and a Peierls charge den-
sity wave �CDW� insulator for Ueff�0. There is, however, a
metallic region with finite spin gap, but no charge gap in
between these two phases. The transition line to the CDW
state appears for values of � a bit larger than U, similar to
what is observed in our calculations but more pronounced.
For larger U this intermediate region shrinks until we get a
direct first order Mott-Peierls transition. A major difference
with the high dimensional results is the real symmetry break-
ing in our case as well as the existence of the intermediate
region, for which we find no indication here. Nevertheless
the mentioned similarities and also recent results in d=2
�adiabatic limit�48 suggest that the features of the phase dia-
gram in Fig. 1 might be quite general, largely independent of
dimensionality.

In Fig. 1 we have also included the phase boundaries of
the HH model when no long-range order is allowed for. We
see that only for large coupling do the phase boundaries
merge, while for smaller couplings other scales are impor-
tant. For the case �0=0.2 this has been analyzed
earlier.16,17,24 The Mott transition, as obtained on increasing
U for fixed g is only little affected by the additional electron-
phonon coupling, which is manifested in a shift of the critical
Uc for the transition. The metal-bipolaron transition, ob-
served when increasing g for fixed U, is of second order for
smaller interactions and becomes of first order for large in-
teractions, and thus similarities with the ground-state behav-
ior are found. Note that the CO state and the bipolaronic
state are different, as in the latter no symmetry is broken and
the occupation expectation value is always 1, whereas in the
CO state nA�nB. For details we refer to Refs. 16, 17, and 24.

B. Order parameter as a function of �

We consider here the way the two types of order param-
eter change as a function of � for fixed values of U both in
the weak coupling and strong coupling regime. A weaker
coupling case with U=2 is shown in Fig. 2. We can see that
the AFM order is decreased when the electron-phonon cou-
pling is increased, as the repulsion is reduced. Near �=U the
ordering scale is very small ��10−3� and cannot be resolved
in our DMFT-NRG calculations. For ��U the �co shows a

steep rise with �. For this weak coupling case we can study
the limit �0→0 and compare with the corresponding static
mean-field theory �details see Appendix A�. For U=2 the
numerical results are shown in Fig. 3.

The solutions are for situations where the order is exclu-
sive, i.e., only one of the order parameters is nonzero. In the
mean-field calculation the AFM order parameter is larger
than in the DMFT case, and when � is increased is seen not
to be affected by the electron-phonon coupling as long as
�co=0. In contrast the CO order state �co feels the U term,
but increases with �. For U=� the mean-field equations give
order parameters that coincide, and once �co exceeds �afm
the charge ordered state possesses the lowest energy as can
be seen from Eq. �A13� and the inset in Fig. 3. We can infer
from this weak coupling result that there is a direct, discon-
tinuous transition from an ordered to an ordered state at U
=� for �0→0. As seen in Fig. 2 the behavior is strongly
modified when quantum fluctuations are included and �0 is
well finite, as the order parameters are influenced much more
by the presence of the competing interaction. It is numeri-
cally not possible to study the limit �0→0 within our DMFT
approach due to the increase in the bosonic Hilbert space.
The analysis for different values of �0 however conforms to
the trends discussed here �see Fig. 7�.

For larger couplings we saw that the two dashed lines in
Fig. 1 cross, which means that we have a parameter regime
where we find finite �afm and �co. An example for this be-
havior is shown in Fig. 4 for U=5.

The transition here is seen to be rather sharp. The calcu-
lation of the total ground-state energy �see inset� shows that
the transition occurs approximately at Ueff=0, in fact it oc-
curs for small negative Ueff, i.e., on the ��U side. A number
of quantities such as the double occupancy �n̂↑n̂↓	 �see Sec.
III C� show discontinuities at the transition. The total energy
�see inset of Fig. 4� is continuous function of �. It shows,
however, a kink at the transition, such that first derivatives
will be discontinuous.

C. Double occupancy

A characteristic quantity for the electronic part of the sys-
tem is the expectation value for the local double occupancy.
This is a homogeneous quantity in the normal �N� and AFM
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FIG. 2. �Color online� The expectation values � for U=2 as a
function of �. The inset shows the total energy.
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FIG. 3. �Color online� Mean-field result for the order parameter
and total energy shown in the inset.
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phase. In the charge ordered phase it differs for A and B
sublattice, and �n̂A,↑n̂A,↓	 and �n̂B,↑n̂B,↓	 are given as detailed
above when discussing the energy due to the Hubbard inter-
action term. We can compare the quantities by taking the
average over the two sublattices, �n̂↑n̂↓	=�	�n̂	,↑n̂	,↓	 /2. In
Fig. 5 we show the results for U=2,5 as a function of �. We
have included the N, AFM, and CO state, and for the latter,
the averaged as well as the sublattice quantities.

For the continuous transition at U=2 we find a small
nearly linear increase with � for the N and AFM state. The
values for N and AFM state are very similar with the double

occupancy being larger in the normal phase, where the
charge carriers are more mobile than in the ordered phase.
This is different from the strong coupling case, where the N
state is in the Mott phase, and the double occupancy is lower
than in the AFM case. This is due to the superexchange
mechanism which leads to a kinetic energy gain and a
slightly higher mobility and also double occupancy. When
��U and charge order sets in, the double occupancy shows
a steep rise on the A sublattice and decrease on the B sublat-
tice. As can be seen in the top panel of Fig. 5, the � depen-
dence is continuous for U=2. At approximately �=3 the N
state metal-bipolaron transition occurs, where �n̂↑n̂↓	 in the
normal state increases rapidly �but also continuously�. �n̂↑n̂↓	
is then larger than in the CO state which can be understood
by thinking about the fact that the CO state wins energeti-
cally against the BP state through kinetic energy due to pair
hopping �see Sec. IV�.

The overall behavior in the lower panel of Fig. 5 for U
=5 is similar. �n̂↑n̂↓	 increases slightly with � for a certain
range and more rapidly near the transition. There, we can
clearly see the discontinuous behavior for ��5 and �n̂↑n̂↓	
jumps from the value 0.09 in the AFM state to 0.42 in the
CO state. The BP state again has a larger double occupancy
than the average of the CO state.

D. Order parameter as a function of U

So far we have analyzed the transition as a function of �.
Similarly, we can look at the properties of the model as a
function of the on-site repulsion U. We focus on the order
parameters and look at the cases of a fixed ��2.13�g=0.8�
and ��4.8�g=1.2� shown in Fig. 6.

In both cases for small U the CO state dominates, but on
increasing U, �co is driven to zero and �afm becomes finite.
Similar to the weaker coupling case for fixed U for �
�2.13, the order parameters approach zero at the transition.
We also have continuous transition here, which is visible in
the total energy plotted as an inset.

In contrast for larger ��4.8 �lower panel in Fig. 6� the
picture is as for the larger coupling cases above, where the
transition occurs with finite order parameters, which change
discontinuously. Also here, as seen in the inset, the total
ground-state energy displays a kink at the transition. Sum-
marizing, we can say that the transition occurs in similar
fashion as a function of U or �. Depending on the magnitude
of the coupling constants continuous or discontinuous tran-
sitions can be observed.

E. Dependence of the order parameter on �0

So far we have found that the transition from the CO to
the AFM state occurs close to Ueff=0 independently of the
other parameters. For fixed �0, when studying the order pa-
rameters or double occupancy, one could see quite a different
dependence on � or U near the transition with a continuous
and discontinuous behavior. In the following we study how
the order parameters depend on Ueff near the transition for
different values of �0. We illustrate this in Fig. 7, where we
plot the respective order parameters for different �0, includ-
ing the case �0→�, which is given by the pure Hubbard
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FIG. 4. �Color online� The expectation values � for U=5 as a
function of �.
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model with local interaction Ueff. We have held U=3 fixed
and varied g to obtain the desired values.

As one can see clearly the “sharpness” of the transition
increases when �0 is decreased. For �0→� the order param-
eters approach zero in a similar exponential form as in mean-
field theory.49 The form of the transition is then symmetric
with respect to Ueff=0. For finite �0 when tuning Ueff with g
the transition will be asymmetric and the order parameter is

decreased much less when the effective interaction is close to
0, as seen most pronounced for the case �0=0.2 �full line�. In
the adiabatic limit, �0→0, we always expect a discontinuous
transition at zero temperature. For finite �0 we have the com-
petition of the Hubbard repulsion and phonon-induced attrac-
tion. The effect of latter enters at lower energies for smaller
values of �0. This might explain why the AFM order is more
stable then. To establish CO as the ground state, it seems to
be mainly necessary that U��, and the large U at higher
energies does not spoil this. Retardation effects seem to play
hardly any role at half-filling for these static orders.

We can conclude from this section that with generality the
AFM-CO quantum phase transition occurs approximately
when electron interaction parameter U and phonon attraction
� are equal. The behavior near the transition, e.g., the order
parameter depends, however, very much on the interaction
strength as well as the phonon frequencies. Small phonon
frequencies and large interactions lead to discontinuous be-
havior, whereas for large phonon frequencies the competing
interactions lead to more cancellations, reduced order, and
much evidence for continuous transitions. Then there exists a
point on the transition line �tc�U, separating continuous and
discontinuous transitions. We find that the value �tc increases
with �0. In the limiting case of �0→�, there are only con-
tinuous transitions such that �tc=�, whereas we expect that
for �0→0 there are only discontinuous transitions and �tc
=0. It would be of interest to explore how �tc varies for finite
�0 as a function of temperature. As temperature tends to
increase fluctuations and decrease order, the naive expecta-
tion would be that �tc increases with temperature.

IV. DIFFERENT CONTRIBUTIONS TO THE TOTAL
ENERGY

We have used the total ground-state energy Etot to decide
whether the AFM or CO state is the ground state. In this
section we give details of the different contributions to Etot in
Eq. �4�, and their dependence on the electron-phonon cou-
pling for fixed U. Let us first remark generally on the energy
of the ordered state in comparison with the normal �N� state.
In the half-filled pure Hubbard model at weak coupling the
AFM state has lower potential energy than the N state, but
higher kinetic energy. At strong coupling the AFM has lower
kinetic energy than the N state �exchange term�, but higher
potential energy than the N state �Mott insulator�. In the pure
Holstein model the CO state has a lower potential energy at
weak and intermediate coupling and higher kinetic energy
due to localization. At strong coupling when the N state is
insulating �bipolaronic� the energy is lowered in the CO state
due to lower kinetic energy �pair hopping�.

In the situation with finite U and g, we have a competition
between the different terms. The AFM state will usually have
smaller EU, since double occupancy is lower, whereas the
CO state possesses larger EU but contributions from Eg lower
the energy. However, we also have to take into account the
contribution Eph, which is larger in the CO state. In Fig. 8 we
see the behavior of kinetic energy for the electrons Ekin and
oscillator energy of the phonons Eph, where the energy �0 /2
for zero point motion was omitted.
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We show the quantities for the values U=2 �left� and U
=5 �right� as a function of � in CO, AFM, and N state. As a
reference energy recall that for the free system Ekin

0 �
−0.849. Similar to the pure Hubbard or Holstein model the
electronic kinetic energy of the AFM and CO state is larger
than the N �metallic� state, while the energy gain comes from
the interaction energies, EU for the AFM state and Eg for the
CO state, see Fig. 9, both for U=2 and U=5. The situation is
different for the BP state ���3.1 for U=2 and ��5.4 for
U=5�. Then the CO state wins through lower kinetic energy,
while the interaction energy is lower in the BP state.

The phonon energy does not change much with � for
values ��U in the N and AFM state, but increases rapidly
for ��U both in the N and CO state. This is mainly due to
the increase in potential energy �0

2�x̂2	 /2, as will be seen in
detail in Sec. VI when we discuss �x̂2	.

The energy of the AFM state depends relatively little on
the electron-phonon coupling, i.e., if the order is not de-
stroyed, the phonons have a minor effect on the static prop-
erties. EU has a small value for weak electron-phonon cou-
pling and tends to U /2 in the case of strong coupling for the
BP and CO state. For weaker repulsion, U=2, the energies
vary continuously with �. However, for the stronger coupling
case U=5 we can clearly see the discontinuities at the
AFM-CO transition, U��. Eph jumps from a low value in
the AFM state to a large value in the CO state. Due to the
increase in double occupancy also EU increases suddenly at
the transitions. Both of these energetically unfavorable con-
tributions for the CO state are counterbalanced by the abrupt

decrease in Eg, as the electron-phonon gives strong binding
energy in the CO state. As a result the total energy is con-
tinuous at the transition, but shows a kink.

For large � the interaction energy Eg is proportional to
−�. For the CO state this can be understood through a fac-
torization of the expectation value in Eg in the electronic and
phonon part. With Eq. �9� discussed later, one finds then
Eg→−4��co

2 . Since in the ordered state �co=1 /2, the be-
havior follows.

V. QUASIPARTICLE PROPERTIES IN THE NORMAL
STATE

In a large part of the phase diagram in Fig. 1 near the
AFM-CO transition, the system without symmetry breaking
is in the N metallic state, which is a Fermi liquid. We can
gain insight into the properties of the system, when we ana-
lyze the quasiparticle properties of the N state. The states
with broken symmetry can then be viewed as instabilities of
the Fermi liquid state. The renormalization factor z, which is
related to the weight of the quasiparticle peak and for a k
independent self-energy to the inverse of the effective mass
of the quasiparticles, m� /m0=z−1. It can be calculated from
the derivative of the self-energy as well as from the analysis
of the NRG low-energy excitations at the fixed point. From
the latter procedure, one can also deduce a local effective
quasiparticle interaction Ur by comparing the energy of the
lowest two-particle excitation energy Epp with the energy of
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two one-particle excitations Ep, UrEpp−2Ep. For details
we refer to Refs. 37 and 50.

A. Renormalized parameters as function of �

First we discuss how the quasiparticle weight z varies
with �, when U is held fixed. It is shown for various values
of U as a function of � in Fig. 10.

We can identify different effects of the electron-phonon
coupling. For U=0 and small values of U, increasing � leads
to polaron formation and localization of the charge carriers,
which results in a reduction in z and a larger effective mass.
Eventually, the metal-bipolaron transition is reached, where
z→0. For larger values of U the electrons are already renor-
malized for �=0 due to the Coulomb interaction. The first
effect of increasing the electron-phonon coupling is to reduce
this effect and z increases with �. Note that the effect is
substantially less than what would be expected for a pure
Hubbard model with Ueff. The maximal value obtained oc-
curs approximately when ��U, i.e., the renormalization ef-
fects cancel there to the largest extent leading to a least en-
hanced effective mass. Near the M-BP transition m� /m0
diverges as for the weak U case. Apart from the approximate
maximum no particular characteristic behavior is seen in z
near the AFM-CO transition, U��.

As shown in Fig. 11 the effective quasiparticle interaction
Ur varies between positive and negative values depending on
U and �. In the cases for finite U it starts repulsive and goes

to zero approximately where Ueff does. Then it becomes
negative such that there is an effective attraction between
quasiparticle excitations. There is a slight shift toward �
�U for this sign change to occur for larger values of U. This
is in line with the earlier observation that the CO state be-
comes the ground state when ��U.

The change in sign of Ur when U� can be related to the
maximum found for z at this point in Fig. 10. At U�, Ur

0, the quasiparticles are effectively noninteracting. As � is
varied from this point, both �Ueff� and �Ur� increase which
causes a further renormalization of the quasiparticles and a
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reduction in the value of z. The decrease in z from Ur=0
occurs irrespective of whether Ur�0, as in the pure Holstein
model, or Ur�0, as in the Hubbard model.

Taking the viewpoint of instabilities of the Fermi liquid,
one can infer that the ground state, AFM, or CO, is deter-
mined by whether the low-energy quasiparticles interact at-
tractively or repulsively. The sign change in turn occurs
when the bare parameters U, and � on high energies are
equal. One might have expected that in reducing the energy
scale � down to the phonon frequency �0 that the main
retardation effects would renormalize U to some effective
value Ū, where Ū would be of the order of Ur in the pure
Hubbard model, which is such that Ur�U. The attractive
term induced by the phonons would then contribute for �
��0. The change in sign of the quasiparticle interaction

would then be expected to occur when Ū�, which would
correspond to a much smaller value of � than �U. The fact
that the transition and the change of sign of Ur are found to
occur when U� indicates that U term and the � term are
renormalized in a similar way as the energy scale is reduced.
As noted before, however, when discussing the order param-
eter, the system cannot be described simply by an effective
Hubbard model and both the electronic interaction U and �
play a role in determining the properties of the system in a
certain phase. For instance, the CO order parameter in Fig. 4
corresponding to Ueff�−0.01 is �co�0.4, but the result
would be close to zero for the pure Hubbard model with this
interaction on all energy scales.

When � exceeds a certain value �Ur� decreases again, and
we can also see that not only z but also the effective quasi-
particle interaction Ur goes to zero at the M-BP transition. It
is of interest to study the combined quantity Ur /z=Urm�,
which is plotted in Fig. 12.

This product of the effective quasiparticle interaction and
effective mass takes into account the aspect of the localiza-
tion tendency of the quasiparticles as well as their residual
interaction. We can see that it shows a more universal behav-
ior for the different cases. It decreases monotonically as a
function of � for the given values of U. Close to the M-BP
transition in all cases Urm� tends to a value between 2.5 and
3. One is therefore tempted to identify this as the relevant
quantity for an instability of the metallic state, such that the
M-BP transition occurs.

B. Renormalized parameters as function of U

Similarly, we can also study the behavior of the quasipar-
ticle properties for fixed � as a function of U. The quasipar-
ticle weight z is shown for various values of � as a function
of U in Fig. 13.

For �=0, z is monotonically driven to zero when increas-
ing U to the Mott transition. For finite values of � increasing
U leads to an increase in z when we come from the bipo-
laronic state and thus to a derenormalization as �Ueff� de-
creases. Similar to the case observed above but more pro-
nounced, one finds z to be approximately maximal near the
AFM-CO transition, U��, i.e., when Ueff as well as Ur are
close to zero. Different renormalization effects have then
canceled to maximal extent, leaving relatively weakly renor-
malized, nearly noninteracting quasiparticles. Again it is of
interest to study the quantity Urm�, which is plotted in Fig.
14.

As noted before it goes to zero where Ueff does. Then it
changes sign and increases with U as long as the system is in
the metallic state. Close to the Mott transition, it approaches
a value 2.5–2.7 which is approximately the same for differ-
ent values of �. It seems therefore that for this metal insula-
tor transition a universal value determines when it occurs.
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VI. PROPERTIES OF THE PHONONS

So far, we have studied the CO-AFM transition via the
electronic properties, which where greatly influenced by the
interaction with the bosonic modes. In turn the properties of
the local harmonic oscillator modes are also modified by the
coupling to the electronic degrees of the freedom, depending
on the different coupling strengths. First we consider the
phonon number expectation value nph= �b†b	. It is expected
to increase in the CO �BP� state as a high probability of local
double occupation leads to a charge redistribution and thus a
�temporal� displacement of the lattice ions. This means that
phonons become excited, multiplied with �0 this gives the
energetic contribution Eph=�0nph. This was discussed in Sec.
IV in Fig. 8 for U=2 and U=5 as a function of �.

We find that the low value for nph in the AFM state in-
creases quite slowly as the coupling strength is increased.
Once the transition to the CO state has occurred, nph in-
creases substantially. The expectation values connect con-
tinuously, but increase rapidly for larger �. The value for the
normal state lies below the CO result but increases rapidly
for ��3, where the metal-bipolaron transition occurs. This
behavior can be compared with the result for larger U=5,
which is shown in Fig. 8 �bottom right�. We can see that nph,
being small in the AFM state, remains nearly unaltered when
the coupling is increased. The large U and strong AFM order
suppresses local charge fluctuations. The value increases rap-
idly near Ueff=0 in the CO state. The expectation value
changes therefore discontinuously at the transition. The be-
havior in the normal state is similar to the earlier case and the
metal-bipolaron transition ���5.3�, which is also discon-
tinuous for these parameters.

The charge order, which we have characterized by �co,
can also be seen directly in the displacement expectation
value on the A sublattice �x̂A	= �bA+bA

†	 /�2�0��x	. This
value is always zero in the AFM and N state but finite once
the CO symmetry is broken. In Fig. 15 it is plotted for vari-
ous values of U as a function of �.

We can see that similar to the behavior of the order pa-
rameter �x	 increases close to the transition, and more rapidly
for larger U. In its dependence on the coupling strength, it
appears to be very similar to the order parameter �Figs. 2 and

4�. In fact, one can show that they are directly related by an
exact identity,

�x	 = −
2��

�0
�co, �9�

which can be derived by considering an additional term Hc
i

=�0c�bi+bi
†� in the Hamiltonian and calculating the deriva-

tive with respect to c. The numerical values for the left- and
right-hand side of Eq. �9� agree very well. We can see that
the slope at the transition increases with U. At large U, or
very small �0, there is a very sharp transition as seen for the
case U=5.

The effect of the strong electron lattice coupling can be
seen in the displacement fluctuations �x̂2	, which are plotted
in Fig. 16 for U=2 and U=5 and a range of �. The behavior
is reminiscent of the phonon expectation value nph, where a
continuous rise near the transition is visible for weaker cou-
pling and a discontinuity from the AFM to the CO state of
the stronger coupling case. Here also the normal BP state
possesses a larger value than the CO state. The close com-
parison with the results for nph shows that for large coupling
in the BP and CO state x0

2�1+4nph� /2 gives a good fit. This
result can be derived by taking ni,↑=ni,↓=1, and performing a
displaced oscillator transformation to new phonon operators,
a, a†, and a�†�=b�†�+g /�0. The ground state �gs	 then corre-
sponds to the state a�gs	=0, and in this state �b†b	=g2 /�0

2

=nph, and �x̂2	=x0
2�1+4g2 /�0

2� /2, giving the required result.
The state �gs	 in the original basis corresponds to the coher-
ent state �n

	n

�n!
�n	 �b†b�n	=n�n	�, with 	=−�nph, and the re-

sult can alternatively be derived by taking the expectation
value of x̂2 in this state. The decoupled oscillator state is an
eigenstate �n	, but when strongly coupled to the electronic
system the nature of the state changes to the coherent ground
state due to the displacement of the oscillator.

If we multiply �x̂2	 by �0
2 /2 we obtain the potential energy

of the harmonic oscillator. The comparison with Eph shows
then that most of the phonon energy is in the potential energy
due to the charge redistribution, and only small proportion in
the kinetic energy of the oscillator.

The real lattice fluctuations are large in the BP state where
the local occupancy changes from double to zero, but �x̂	
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=1. A measure of these fluctuations is the quantity �x2

= ��x̂− �x̂	�2	= �x̂2	− �x̂	2. This is a much smaller quantity than
�x̂2	 in the CO state and only large near the transition, as can
be seen in Fig. 17. In the uncoupled state �x2 /x0

2= �x̂2	 /x0
2

=1 /2. In the displaced oscillator �coherent� state, which de-
scribes the strong coupling situation, �x̂	2=2x0

2g2 /�0
2, so

combining this with the expression derived earlier for �x̂2	,
one again finds �x2 /x0

2=1 /2. Both limiting cases can be
found in Fig. 17, where �x2 increases with � in the AFM

state. It then falls again to 1/2, when the system is strongly
ordered. So the “lattice fluctuations” are largest at the tran-
sition.

It is possible to use the density matrix approach in the
NRG �Ref. 51� together with the real space harmonic oscil-
lator eigenfunctions to compute the oscillator displacement
probability function P�x�, which gives further insight into the
behavior of the phonons. Details for this method have been
presented elsewhere.52 The moments of this distribution
function, �x̂m	=
dxP�x�xm, can be calculated from P�x� and
are in agreement with the value determined from the ground-
state expectation values.

VII. SPECTRAL PROPERTIES

In this section, we turn to the excitation spectra of the
coupled electron-phonon system. We first consider the elec-
tronic local lattice Green’s function G	,����, which is given
by the momentum sum of the diagonal element of Eq. �2�,
and its spectral function 	,����=−Im G	,���� /�. In these
calculations the sublattice self-energies �	,���� enter, which
are calculated according to Eq. �B1� following Bulla et al.53

We will comment on complications which can arise in Ap-
pendix B. 	,���� is of special interest in studying the broken
symmetry behavior. In the normal state the Green’s functions
are the same for the sublattices as well as the spin projec-
tions. For the cases with symmetry breaking, CO and AFM,
these functions will differ, i.e., for the CO case the sublattice
Green’s functions differ and for the AFM case the different
spin projections. We focus on the A-sublattice majority spin
spectral function A,↑���. Note that at half-filling the spectra
for minority spin in the AFM case, A,↓���, and for the B
lattice for the charge order, B,↑���, can be obtained from
�→−�. In order to calculate the full electron Green’s func-
tion one has to put the different sublattice Green’s functions
together.37

A. Electron spectra

We first consider the electronic spectral functions near the
transition for the cases of U=2 and U=5. In Fig. 18 we plot
the N state spectral function in comparison with the corre-
sponding symmetry broken one. We have included a N state
spectrum for �→0 in order to first see the effect of the
phonons and associated modification in the normal state.

For U=2 in the upper part of the figure we see that close
to the transition the N state spectrum deviates little from the
�→0 situation, with only a small extra renormalization of
the low-energy excitations �z��=0�=0.73 and
z��=2�=0.57�; the metal-bipolaron transition with z→0 oc-
curs for a larger ��3. The imaginary part of the electronic
self-energy due to electron-phonon scattering becomes finite
when �����0

r , where �0
r is the renormalized phonon fre-

quency �see Sec. VII B�.
For the AFM and CO symmetry broken state we can see

characteristics of the weak coupling instability at the Fermi
surface ��=0� in the sublattice spectral function. It fits well
to the mean-field description, where a square root divergence
is found below the gap.36 The higher-energy parts are little
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modified for the case of U=2 apart from the broadening of
the band edges, but no features which can be attributed to the
phonons can be identified.

In the lower panel of Fig. 18 we can see the situation for
U=5. For �→0 we have the well-known three peak struc-
ture with lower and upper Hubbard band and a quasiparticle
peak in the N state. For ��5 the quasiparticle structure is
still visible, but the Hubbard peaks have been modified to
high-energy shoulders and cannot really be recognized any
more. The effect is as if the effective electron-electron inter-
action is screened by the phonons. The quasiparticle weight
becomes larger in this regime on increasing � �z��=0�=0.1
and z��=5�=0.27, see also Fig. 11�. The low-energy features
of the spectra with symmetry breaking look similar. Directly
above and below the spectral gap one sees pronounced peaks
with larger weight for the one below the gap. At higher en-
ergies the spectra look different in both situations. Here both
features from the large U as well as from higher order po-
laronic behavior can play a role. When interpreting the spec-
tra one has to take into account the broadening and the lim-
ited energy resolution of the NRG at higher energies, which
limit the accuracy. The AFM state with strong electron-
phonon coupling seems to show polaronic behavior at mul-
tiples of �0 with decreasing weight. The charge ordered
spectrum shows a principal peak at a position, which is a bit
less than the fully polarized mean-field shift Un−�

A −2��co
�2.5. The large couplings for this case play a role on differ-
ent energy scales. One may note that for the given param-

eters the order parameters are rather large, ��0.4 �see Fig.
4�, whereas the spectral gap is relatively small.

To study the behavior of the spectral functions at different
couplings we give various plots in Fig. 19. On the left-hand
side we keep U=2 fixed and show �from top to bottom� the
spectra for N, AFM, and CO state for various �. On the
right-hand side U=5 is kept fixed.

The top panel shows the metal to bipolaron transition
when � is increased. One can see the strong narrowing of the
quasiparticle band near the transition, which is accompanied
by z→0. A spectral gap develops when � exceeds a critical
coupling. The details of the spectral functions have been ana-
lyzed by Koller et al.17 In the AFM case, in the middle we
can see for the weaker coupling case how, on increasing �,
the AFM order and magnitude of the spectral gap decreases.
The electron-phonon coupling is effective here in screening
the repulsive U term. No polaronic features can be identified
in the spectra as the coupling is fairly weak. At stronger
coupling, the AFM state is hardly affected for a range of �.
When approaching the transition we find visible modifica-
tions of the spectral functions including a reduction in the
spectral gap and polaronic peaks.

In the bottom part the spectra in the CO state can be seen.
Near the transition the spectra differ for the weak and strong
coupling case as discussed before, but when � exceeds U by
a certain amount the spectra look very similar, and the dif-
ferent U term is not directly visible anymore. As noted be-
fore the main peak for the sublattice spectra is located near
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FIG. 18. �Color online� The local A-lattice spectral functions in comparison for U=2 �upper panel� and U=5 �lower panel�. Left:
comparison of N state spectrum with AFM majority spin A,↑��� near the transition. Right: comparison of N state spectrum with CO A site
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the mean-field shift and its position moves linearly with � as
expected. There is a pronounced quasiparticle peak near the
transition which becomes suppressed for larger values of �.
This suppression can be partly due to the broadening in the
NRG procedure as discussed in detail for superconducting
solutions.49

B. Phonon spectra

In this section, we study the spectral properties of the
phonons. From these we can find out how the excitations of
the bosonic sector are modified through the interaction with
the electronic system. Especially near a transition a strong
phonon softening can be indicative of a lattice modification
or instability. We consider the function

B��� = ��b;b†		�, �10�

which can be calculated in the NRG from the matrix ele-
ments and excitations. The spectral function, b���=
−Im B��� /�, has the properties at T=0,

�
−�

�

d�b��� = 1, �
−�

0

d�b��� = − nph, �11�

and the free propagator has the form

B0��� =
1

�+ − �0
. �12�

We define a phonon self-energy �ph���, and the full propa-
gator reads
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B��� =
1

�+ − �0 − �ph���
. �13�

For a decoupled electron-phonon system �ph���=0 such that
b��� is a delta function peaked at �0. In the strongly inter-
acting system the mode can be renormalized to �0

r and
broadened, however, no q dependence develops in the infi-
nite dimensional model.

Again we focus on the cases with fixed U=2 and U=5 for
variable �, and we compare the results from the N state with
the ordered state. In Fig. 20, we plot in the upper part the
results for the spectral function of the phonons b��� for U
=2 for the N state �left� and the ordered states �right� and the
lower part for U=5.

When the electron and phonon systems are weakly
coupled the expected delta function for b��� is found. When
� is increased the phonon mode is substantially renormalized
and softens, most markedly at the M-BP transition for �
�3 where �0

r →0. The negative spectral weight for �, which
builds up there, is directly related to the phonon expectation
value nph. In the BP state it is not resolved any more. The
phonon mode then hardens back to �0. Apart from the soft-
ening we also find a broadening of the phonon spectrum,
when the system is strongly coupled. The behavior for U
=5 is similar to the U=2. A more detailed discussion can be
found in Ref. 17.

In the right-hand side panels of Fig. 20 the corresponding
behavior of b��� is shown in the states with broken sym-
metry. The results for ��U correspond to the AFM phase
and the ones for ��U to the CO phase. Comparing the
metal-bipolaron transition to the AFM-CO transition we find
that the effect of the phonon softening is much reduced. For
U=2, we can see a visible effect that the oscillator mode is
renormalized to �0

r �0.27 and broadened. The effect is com-
parable to the normal state for the same values of U and �,
but not as strong as at the M-BP transition. The softening is
of similar magnitude in the stronger coupling case U=5.
There a significant broadening of the phonon mode is visible
near the transition due to the large coupling of the phonons
to the electronic system. When the system is well in the
ordered state, AFM, or CO, the phonon dynamics is little
modified by the electronic system and a nearly free phonon
mode is observed both for large U�� in the AFM state and
U�� in the CO state. The sum rules for b��� given in Eq.
�11� are satisfied to within a few percent for smaller values of
�. For larger � in the BP and CO state the sum rules are not
well satisfied due to reasons discussed in Ref. 17.

VIII. CONCLUSIONS

In this study of the competing interactions in the Holstein-
Hubbard model, we have examined the transitions to AFM
and CO, both in the weak and strong coupling regimes. To

−0.2 0 0.2 0.4 0.6 0.8

0.13

0.53

1.2

2.41

2.7

3.01

3.2

3.27

4.03

ω

λ
ρ

b
U =2

−0.2 0 0.2 0.4 0.6 0.8

0.13

1.01

1.63

1.88

2.24

2.41

2.7

3.33

4.8

ω

λ
ρ

b
U =2

CO ↑

AFM ↓

−0.2 0 0.2 0.4 0.6 0.8

1.2

3.33

4.03

4.8

4.96

5.13

5.55

6.08

ω

λ
ρ

b
U =5

−0.2 0 0.2 0.4 0.6 0.8

0.13

3.33

4.8

5

5

5.04

5.21

5.63

7.5

ω

λ
ρ

b
U =5

CO ↑

AFM ↓

FIG. 20. �Color online� The local phonon spectral functions b��� in comparison for U=2 �upper panel� and U=5 �lower panel�. Left:
N state. Right: AFM state �smaller values of � and CO state for the larger values of �.

JOHANNES BAUER AND ALEX C. HEWSON PHYSICAL REVIEW B 81, 235113 �2010�

235113-14



lowest order, the effective frequency dependent interaction
Ueff��� between the electrons is given by

Ueff��� = U +
2g2�0

�2 − �0
2 , �14�

the second retarded term arising from phonon exchange. On
the lowest-energy scale �=0, Ueff�0�=U−� ��=2g2 /�0�,
and the sign of this interaction depends on the relative
strength of U and �. In studying the competition between
AFM and CO, it is not surprising to find that the transition
between these states occurs when U�, as Ueff�0��0 fa-
vors AFM and Ueff�0��0, the CO state. What is a surprising
result of this study is that this condition still has some valid-
ity in the strong coupling regime, when both U and � are
large, as the transition is still found to occur when U�. We
find, however, the nature of the transition does depend on the
strength of the couplings, and also the phonon frequency �0.
The transition is found to be continuous for weak couplings,
and a high phonon frequency �0, but becomes discontinuous
in the strong coupling regime, and for smaller values of �0.

To gain further insight into this result, we have looked in
detail at the quasiparticle excitations in the normal state. We
have calculated both the quasiparticle weights z and the ef-
fective local quasiparticle interaction Ur. We find that the
local quasiparticle interaction Ur changes sign when U�,
just in the region where the AFM-CO transition occurs; this
is consistent with the interpretation of the transition as due to
a Fermi liquid instability. Though the interaction between the
quasiparticle goes to zero at U�, the quasiparticles may
still be quite significantly renormalized. For example, for
U=�=5 we find z�0.3. The fact that the local quasiparticle
interaction goes to zero in the region U�, corresponding to
Ueff�0�=0, suggests that the two terms contributing to
Ueff���, are renormalized on the very low-energy scale in a
similar way. This is somewhat surprising, as in considering
similar competing interactions in the case of superconductiv-
ity, it is generally assumed that the dominant renormalization
is of the Coulomb term so that it does not overwhelm the
attractive term from phonon exchange. That the two terms
are renormalized here in a similar way may be a feature of
the Holstein-Hubbard model, where the phonon term is
coupled to the occupation of a local charge. A model in
which the phonons are coupled to a redistribution of the local
charge, as with a coupling to Jahn-Teller modes, might be-
have differently. This topic deserves further investigation.

In calculating the individual contributions to the total en-
ergy in the different ordered states and the normal state, we
have been able to show the subtle interplay of the various
terms. These vary in the weak and strong coupling regimes,
and may change discontinuously at the transition. They also
depend on the phonon frequency �0. In the weak coupling
regime the energy gain in the broken symmetry state is via a
reduction in the potential energy relative to that of the nor-
mal state, whereas at strong coupling it is the kinetic energy
which is lower in the ordered state. This appears to be a
general feature.

The final part of this study has been concerned with the
spectra, both of the electrons and phonons. The main effects

seen in the phonon spectra are a softening and a broadening
of the phonon mode in the region of the transition. In the
AFM and CO states well away from the transition there is
little effect of the coupling to the electrons on the phonon
spectrum. It is more difficult to summarize the results for the
electron spectra, as there significant differences develop on
all energy scales as the interaction parameters are varied, and
as the long-range AFM or CO develops. For relatively small
values of U and � the main differences are in the region near
the Fermi level for AFM or CO states compared with the
normal state. This is due to the development of the sublattice
structure. For large values of U and small values of � there is
the triple peak structure of the Hubbard model, with the nar-
row renormalized quasiparticle band at the Fermi level
flanked by the broadened “atomic” peaks. As � is increased
to �U, in the normal state, the narrow quasiparticle band
persists, though broadened somewhat, and the atomiclike
peaks broadened into shoulders. In the AFM or CO states,
the quasiparticle band at the Fermi level develops the fea-
tures associated with the sublattice structure, as in the weak
coupling case. This is also accompanied by much larger
shifts of spectral weight on the high-energy scales in the
sublattice spectral density.
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APPENDIX A: MEAN-FIELD THEORY IN THE ADIABATIC
LIMIT

For the mean-field theory in the adiabatic limit, the start-
ing point is the Hamiltonian in the form

H = − t�
i,j,�

�ci,�
† cj,� + H.c.� + U�

i

n̂i,↑n̂i,↓

+ gF�
i

x̂i��
�

n̂i,� − 1� + �
i

p̂i
2

2M
+

k

2
x̂i

2, �A1�

where the parameters of Eqs. �A1� and �1� are related by
�0=�k /M, gF=�2�0g, and �=gF

2 /k. In this Hamiltonian we
can take the limit M→�, such that the kinetic term for the
phonons vanishes and we replace the operator x̂i by a static
field xi. From this we obtain in mean-field theory the poten-
tial

V�xi� = �
i

k

2
xi

2 + gF�
i

xi�ni − 1� + Ekin + EU, �A2�

where ni=���n̂i,�	. The condition for a local minimum
�V�xi� /�xi=0 yields,

xi = −
gF

k
�ni − 1� . �A3�

We restrict ourselves to homogeneous solutions, and from
the Hamiltonian the mean-field self-energy can be read off,
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�	,���� = Un−�
	 − ��n	 − 1� , �A4�

independent of � and we have employed Eq. �A3� for the
second term. The index 	=A ,B corresponds to the sublattice
and � to the spin.

In order to determine n�
	��n̂�

		 we need to consider the
equation

n�
	 =

2

N
�

k
�c	,k,�

† c	,k,�	 =
2

N
�

k
�

−�

�

d�f−���	,k,���� ,

where

	,k,���� = − Im
�	̄,���+�/�

�A,���+��B,���+� − �k
2 , �A5�

with �+=�+ i�. We have used the matrix Green’s function
for the bipartite lattice in the form Eq. �2�. This is most easily
evaluated with the identity

− Im
�	̄,���+�/�

�A,���+��B,���+� − �k
2 = �

m=�

um,�
	 ��k���� − �m,���k�� .

�A6�

The excitation �m,���k� are determined from the poles of the
Green’s function,

�A,�����B,���� − �k
2 = 0, �A7�

which yields generally

��,���k� =
�A,� − 
A,� + �B,� − 
B,�

2
� Ek,�, �A8�

where

Ek,� =��k
2 +

�
A,� − �A,� − �
B,� − �B,���2

4
. �A9�

The weights um,�
	 ��k� are generally given by the inverse of

the derivative wrt � of

f�
	��� = �	,���� −

�k
2

�	̄,����
�A10�

evaluated at ��,���k�,

um,�
	 ��k� =

�	̄,���m,���k��2

�k
2 + �	̄,���m,���k��2 . �A11�

Using these results, we find

n�
	 = �

m
� d�

0���um,�
	 ���

1 + e��m,���� , �A12�

through which n�
	 can be determined self-consistently.

Once n�
	 is determined we can calculate the ground-state

energy to determine which state has the lowest energy. The
expression for the total energy reads

Emf =
1

N
�
k,�

��k�cA,k,�
† cB,k,�	 + H.c.� −

�

2 �
	

�n	 − 1�2

+
U

2 �
	

n	,↑n	,↓,

where we have substituted Eq. �A3� for x. This can also be
written as

Emf = Ekin
mf − ����co

A �2 + ��co
B �2� +

U

2
�nA

2

4
− mA

2 +
nB

2

4
− mB

2� ,

where

Ekin
mf = �

�
� d�

0����2

2E���� � 1

1 + e��+,���� −
1

1 + e��−,����� .

For half-filling, �co= ��co
A �= ��co

B �, �afm= ��afm
A �= ��afm

B � this
can be written in the simple form

Emf = Ekin
mf + �U − 2���co

2 − U�afm
2 +

U

4
. �A13�

From this we can see that if the order parameters are equal
and exclusive the CO state has lower energy for ��U and
the AFM state otherwise.

APPENDIX B: CALCULATION OF THE SELF-ENERGY

In NRG calculations it is common practice to determine
the self-energy from the Green’s function G	,���� and the
higher order Green’s function F	,���� via53

�	,���� = U
F	,����
G	,����

. �B1�

This can be derived in equations of motion approach. As
F ,G are complex functions, F=FR+ iFI, we can write

� = U
FRGR + FIGI + i�FIGR − FRGI�

�GR�2 + �GI�2 , �B2�

where we have omitted the indices and the arguments. The
procedure �Eq. �B1�� for obtaining � has turned out to work
well in many cases both for impurity models and lattice
models within the DMFT framework.39 The imaginary part
of the retarded self-energy has the well-known property
Im �	,�����0, which is respected in Eq. �B2� if F and G are
the exact Green’s functions. However, in a numerical self-
consistent DMFT calculation of G ,F small inaccuracies—
usually near ���=0—can lead to FI���GR���−FR���GI���
�0 and thus slightly positive values for Im � via Eq. �B2�.
Clearly this is physically incorrect. We have used two differ-
ent ad hoc procedures to deal with this complication. The
first one �a� is to subtract from �	,�

I ��� the values by which
it exceeds zero in a certain interval around �=0. The second
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one �b� is to cut off �	,�
I ��� at zero, i.e., to set it equal to zero

for all values where it is positive. We found that in most
cases the procedures give approximately the same result.
However, very close to the AFM-CO transition the procedure

can have an effect on the final result obtained via the self-
consistency equation. One finds that ordered solutions are a
bit less stable for method �a�. We have decided to present all
results in this paper obtained by using method �b�.
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